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Abstract
We investigate scattering on an infinite number of point interactions distributed
periodically on a finite number of parallel planes. Exact formulae for the
transmission coefficients are given and their numerical behaviour is presented.
For some values of the interaction parameter the reflection coefficient is close
to one for a relatively large set of incident wavelengths.
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1. Introduction

In recent years many papers have been devoted to the study of photonic crystals i.e. periodic
structures in which electromagnetic fields cannot propagate for some range of wavelengths
and directions [18, 8, 5, 4]. Band gaps have been exhibited numerically for some peculiar
periodic structures [12, 13, 14, 11, 19].

Real experiments use, of course, samples which are not infinite periodic structures but
slabs or films. So theoretically it is interesting to study not only the spectrum corresponding
to these samples but also their scattering properties. Common belief is that the waves whose
frequencies are inside the gap for the full infinite structure, will be totally reflected by the slab
regardless of their direction, if the width of the slab is sufficiently large. We can also ask if
for other frequencies waves can be almost totally reflected for some partial set of directions.
The aim of this paper is to solve a model giving us a response to these questions.

In a first attempt we will not look at the electromagnetic situation with Maxwell equations
but at the Schrödinger equation. So we will study Hamiltonians corresponding to an infinite
number of scatterers distributed over several planes, each of them forming a bidimensional
lattice.

Each individual scatterer is described by a point interaction potential, which models an
interaction of slow particles with a short range potential supported by a region much smaller
than the wavelength. Such a kind of model has been introduced by Bethe and Peierls [3]
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and Thomas [17] and studied in a mathematically rigorous way by Berezin and Faddeev
[2], Grossman, Høegh-Krohn, and Mebkhout [6] and Karpeshina [9]. A detailed review has
been given in the book by Albeverio et al [1]. This simplification brings the advantage that
the scattering by a unique interaction centre is explicitly known and simple. The scattered
wavefunction at a point �x corresponding to the incident plane wave ei�k�x is a spherical wave

ei�k�y
4πα−ik

eik|�x−�y|
4π |�x−�y| , where �y is the position of the point scatterer and α is a parameter, positive or

negative.
An infinite number of scatterers whose potentials are zero-range potentials have been

studied earlier in [10, 15], in particular the study of the spectrum corresponding to a layer can
be found in [1].

In section 2, we give the expression for a set of generalized eigenfunctions. They are
the sum of the incident plane wave, several scattered plane waves with different wave vectors
linked with the two-dimensional reciprocical lattice vectors and surface waves which decrease
exponentially as the distance to the layers increases. The amplitudes of the plane waves i.e. the
transmission and reflection coefficients can be expressed by series which are well convergent
numerically.

In section 3, we give the numerical values for the transmission coefficients for some range
of energies in the case of one layer. Playing with the strength of the individual scatterer α, we
will see that the most intriguing effect is that, even for a small number of layers, an interval
exists for the α near value −0.25, such that for wavelengths larger than twice the distance
between the scatterers, the reflection is close to 1. We also give the numerical results for
the amplitudes of the resulting scattered plane waves corresponding to ten planes for several
strengths of the individual scatterer.

2. The formalism

The point scatterers are located on N two-dimensional parallel planes. Each layer is defined
by a vector yν, (ν = 1, . . . , N), which fixes the seed, and by two independent vectors a2 and
a3 whose coordinates are

(
0, a2

� , a
3
�

) ∈ R
3, � = 2, 3. So the point scatterers in the ν th plane are

located on the two-dimensional lattice �2,ν = {y|y = yν +m2a2+m3a3 ∈ R
3,m = (m2,m3) ∈

Z
2}. As in [1], we denote by �2 the set of vectors λm = m2a2 + m3a3 ∈ R

3, (m2,m3) ∈ Z
2

and by Y = ⋃
ν �2,ν the set of scatterers.

We consider in R
3 the vectors b2 and b3 which satisfy biaj = 2πδij and denote by

γn = n2b2 + n3b3, where n = (n2, n3) ∈ Z
2 a vector of a two-dimensional lattice, called the

reciprocical lattice, �⊥
2 .

The Hamiltonian −	α,Y corresponding to this set of scatterers is defined in [1], where
it is shown that it can be decomposed in a direct integral of self-adjoint operators −	α,Y (θ)

acting on H(θ) which is the set of functions φ(x1, x2, x3) belonging to L2(R × S2), (S2

is the two-dimensional unit cell, x2a2 + x3a3 ∈ S2, if 0 < x2, x3 < 1) and such that
φ(x1, 1, 1) = ei(θ2+θ3)φ(x1, 0, 0), where θ = (θ2, θ3) belongs to the two-dimensional Brillouin
zone B2 = R

2/�⊥
2 .

For Im[z] > 0 the reduced resolvent (−	α,Y (θ) − z)−1 is given in [1], p 213 (1.6.23):

(−	α,Y (θ) − z)−1 = g√
z(θ) +

∑
ν,ν ′

(�α,Y (
√

z, θ))−1
νν ′(g√

z(. − yν ′ , θ), .)g√
z(. − yν, θ), (2.1)

where

g√
z(x, θ) = 1

2
|S2|−1

∑
n

e−
√

|γn+θ |2−z|x1|√
|γn + θ |2 − z

ei(γn+θ)x‖ ,
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see (1.6.12) p 211 in [1], x ∈ R × S2, (|S2| is the area of S2) and

�α,Y (
√

z, θ) = (αδν,ν ′ − g√
z(yν − yν ′ , θ))Nν,ν ′=1,

see (1.6.19) p 212 in [1] and g√
z(θ) is the operator whose kernel is g√

z(x − x ′, θ).
Then one can show that the Green function of −	α,Y can be expressed as

G(x, y, z) = ei
√

z|x−y|

4π |x − y| +
∫

B2

dθ
∑
ν,ν ′

(�α,Y (
√

z, θ))−1
νν ′g√

z(x − yν, θ)g√
z(y − yν ′ , θ). (2.2)

We calculate then G(x, k, z) = ∫
G(x, y, z) eiky dy, k = (k⊥, k‖) ∈ R

3 and define (x, k) =
limε→0 −iεG(x, k, k2 + iε).

One obtains

(x, k) = eikx +
1

2
|S2|−1

∑
ν

(∑
ν ′

[�α,Y (|k|, k‖ − γ ′)−1]ν,ν ′ eikyν′

)

×

 ∑

n,|γn+k‖|<|k|
i
ei
√

k2−(γn+k‖)2|x1−yν1|√
k2 − (γn + k‖)2

ei(k‖+γn)(x‖−yν‖ )

+
∑

γn,|γn+k‖|>|k|

e−
√

(γn+k‖)2−k2|x1−yν1|√
(γn + k‖)2 − k2

ei(k‖−γn)(x‖−yν‖ )


 , (2.3)

where γ ′ is the reciprocal lattice vector such that k‖ − γ ′ belongs to B2. It is easy to verify
that (x, k) is a solution of the Schrödinger equation:

−	α,Y (x, k) = k2(x, k).

One can observe that these states consist of a finite number of plane waves (the number
depends on energy k2) plus an infinite number of terms exponentially decreasing in the
direction perpendicular to the plane of scatterers. It has been shown in [10] that there exists
also another set of generalized eigenfunctions which decrease exponentially in the direction
perpendicular to the plane of scatterers. These states are called surface states and they do not
participate in the scattering. Using standard arguments [7, 16] one can prove that the two sets
form a complete orthogonal system in L2(R

3).
Karpeshina proved in [10] that the series∑

m

eik‖λm
ei

√
z|x−λm|

4π |x − λm|
which is evidently convergent for Im[z] > 0 has a limit as Im[z] → 0. This limit is given by
formula (23) in [10].

So the Poisson formula

1

2
|S2|−1

∑
n

i
ei
√

z−(γn+k‖)2|x1|√
z − (γn + k‖)2

ei(k‖+γn)x‖ =
∑
m

eik‖λm
ei

√
z|x−λm|

4π |x − λm|
which is true for Im[z] > 0 remains valid for Im[z] = 0+. This comes from the facts that the
elements of the series are continuous with respect to z, the two series are equal for Im[z] > 0
and they converge individually as Im[z] → 0.

So the scattered wave can also be written as an infinite sum of spherical scattered waves
whose centres are the scatterers positions: yν + λm

(x, k) = eikx +
∑

ν

(∑
ν ′

[�α,Y (|k|, k‖ − γ ′)−1]ν,ν ′ eikyν′

) ∑
m

eik‖λm
ei|k||x−yν−λm|

4π |x − yν − λm| . (2.4)



4838 F Bentosela and M Tater

In [1], p 135 a formula (1.5.1) is given for the scattering wave corresponding to a finite number
of centres. One observes that (2.4) is an extension of this formula, to the case the number of
scatterers becomes infinite. In our case the index j of formula (1.5.1) in [1] becomes a double
index (ν,m). We can interpret

∑
ν ′ [�α,Y (|k|, k‖ −γ ′)−1]ν,ν ′ eik(yν′ +λm) in (2.4) as the amplitude

fνm of the spherical scattered wave at yν + λm.
Now consider some particular cases: if there is only one layer (N = 1) and we suppose

|S2| = 1, the amplitude of the wave scattered by the centre located at y1 + λm is

f1m = eik(y1+λm)�α,Y (|k|, k‖ − γ ′)−1

= eik(y1+λm)(α − g|k|(0, k‖ − γ ′))−1

= eik(y1+λm)

α + limω→∞
(

ω
4π

− ∑
n,|k‖+γn|<ω

1

2
√

|k‖+γn|2−k2)

) . (2.5)

If moreover k‖ = 0 and y1 = 0 then f1m is independent of m, as it is clear from symmetry
considerations, and it depends only on |k|, we will denote it f (|k|). In this case, the generalized
eigenfunction has the expression

ψα,Y (x) = eikx +
i

2

f (|k|)
k

ei|k⊥||x1| +
i

2
f (|k|)

∑
n,0<|γn|<k

ei
√

k2−γ 2
n |x1|√

k2 − γ 2
n

eiγnx‖

+
f (|k|)

2

∑
n,|γn|>k

e−
√

γ 2
n −k2|x1|√

γ 2
n − k2

eiγnx‖ .

So in the case k‖ = 0 the wavefunction is the sum of plane waves with a wave vector whose
first component is

√
k2 − γ 2

n (for all the n such that |γn| < |k|) and of surface waves decreasing
exponentially with exponent

√
γ 2

n − k2, (|γn| > k).

3. Numerical results and conclusion

Let us begin the discussion with the amplitude of the wave scattered at y1 + λm in the case of
one layer formed by a square lattice of period 1. The behaviour of |f (|k|)| is shown on figure 1.
To evaluate |f (|k|)| we used (2.5), where we put ω = 106, which is sufficient to get three
digit precision. The amplitude vanishes at the values of |k| satisfying k2 − (k‖ + γn)

2 = 0.
This implies that they coincide with absolute values of vectors of the reciprocical lattice
when k is perpendicular to the plane of scatterers. We show |f | for three different values
of α (α = −1,−0.25, 1) both in the case of the wave vector perpendicular to the plane of
scatterers (θ = 0) and for k tilted wrt the plane (θ = π/3, φ = π/5). Here, θ is the polar
angle measured from the direction perpendicular to the plane towards the plane and φ is the
azimuthal angle in the plane of scatterers measured from the direction determined by a2.

Further we denote the amplitude of the plane wave ei
√

k2−|γn1n2 |2x1 by An1n2 . For k
perpendicular to the plane of scatterers we get

A0,0 = 1 +
i

2

f (|k|)
|k|

A1,0 = A0,−1 = A0,1 = A−1,0 = i

2

f (|k|)√
k2 − 4π2

...

An1n2 = · · · = An2n1 = i

2

f (|k|)√
k2 − 4

(
n2

1 + n2
2

)
π2

.
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Figure 1. Absolute value of the amplitudes of spherical scattered waves |f (|k|)| are shown for
three values of scatterers strength α = −1,−0.25, 1. The plane of scattering centres (i.e. N = 1)
forms a square lattice of period 1 as described in section 2. The upper row corresponds to the
situation when the incident plane wave is perpendicular to the plane of scatterers and the lower
row to the incident plane wave with the vector k tilted (θ = π/3 and φ = π/5). In both cases
|f | is independent of m, |fm| = |f (|k|)|. The dotted lines mark the positions of |γ0,1| = 2π and
|γ1,1| = 2

√
2π in the upper row, while in the lower row they are determined by k2 − (k‖ +γ )2 = 0.
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Figure 2. The dependence of the amplitudes of scattered plane waves |A0,0| on |k| for three values
of scatterers strengths α = −1,−0.25, 1, for an incident plane wave whose direction with respect
to the plane of scatterers is given by θ = π/3 and φ = π/5. The lattice is the same as that in
figure 1 (N = 1).

There are four plane waves with identical amplitudes A1,0 = A0,−1 = A0,1 = A−1,0, etc. If k
is tilted, this ‘degeneracy’ is generally destroyed, i.e. plane waves begin to appear at different
values of |k|. In figure 2 we present the amplitude of the scattered plane waves |A0,0| for the
same three values of α as in figure 1 (α = −1,−0.25, 1) in the case when the wave vector is
tilted. The values of |k| for which |A0,0| = 1 are determined by k2 − (k‖ + γ )2 = 0.

As was already stated we verify that for α = −0.25 the transmission is very small for a
wide range of |k|, (0 < |k| < π). This phenomenon is also noticeable for α in an interval
around −0.25: (−0.3,−0.2). Let us recall here that the differential scattering cross section
for one point interaction is smaller as |α| → ∞. α = −0.25 corresponds to an interaction
giving a larger scattering cross section than those corresponding to α = ±1. It appears in
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Figure 3. Scattering by N = 10 planes regularly spaced with spacing 1. The dependence of
the amplitudes of scattered plane waves |A0,0| on |k| is presented for three values of scatterers
strengths α = −1,−0.25, 1 and for four directions of the incident plane wave, ((θ = 0, φ = 0)

the full line, (θ = π/3, φ = 0) the dashed line, (θ = 2π/5, φ = 0) the dash-dotted line and
(θ = 49π/100, φ = 0) the dotted line).

figure 2 that stronger scattering effects (strong reflection at low energies) appear for α = −0.25
than for α = ±1.

In figure 3 we present the values for the transmission coefficients for several directions
of the incident wave vector. We only consider the case when the distance between the planes
is constant, the individual α are all equal and y2

ν = y3
ν = 0 for all ν. We choose the distance

equal to 1, α = −1,−0.25, 1, and the number of planes N = 10.
For a given direction of the incident wave vector, as the number of planes increases, the

transmission coefficients decrease in some intervals. When N = 10 they are close to zero
in some intervals. This fact is reminiscent of the behaviour of the transmission coefficient in
one dimension with a finite number of δ-functions (see [1], p 275). There, as the number of
scatterers tends to infinity the values of |k| for which the transmission coefficient becomes
close to zero correspond to energies in the gaps of the spectrum of the Kronig–Penney
operator. These values are multiples of the half of the reciprocal lattice vector length of the
one-dimensional crystal. But here the corresponding energies and the gaps in the spectrum
are no more related, since in the three-dimensional infinite crystal there is at most one gap
(see [1, 9]). This means that, in general, if we change the direction of the incident wave vector,
the energies at which the transmission coefficient is small will change. We can observe that
each curve for A0,0 presents pronounced dips in some wavelength intervals, and there is one
dip which is common to all the directions considered.

We have calculated the gap for α = −0.25, it corresponds to the interval of energies
(−8.515, 8.19) and we can see that the common dip is under the value 2.7 which is near√

8.19 = 2.86. So there is a coincidence between the common dip energies and the gap of the
three-dimensional crystal. When for some energy interval and some direction of the incident
wave vector the transmission coefficient |A00| is small, changing the incident wave vector
direction we observe numerically that the transmission coefficient remains small in some solid
angle.

In conclusion, we have given the formulae for the amplitudes of the plane waves and
evanescent waves which form the total scattered wave. We have established the link between
the transmission coefficients for a layer with a finite number of planes and the spectral
properties of the full infinite crystal in three dimensions. For the values of α for which the
three-dimensional crystal gap, 	2, overlaps the positive energy axis (α = −0.25 is close to
the value giving the largest second band bottom for the full infinite crystal operator), as the



Scattering by a slab: an exact calculation 4841

number of planes increases the transmission coefficients, for the energies in 	2, decrease. We
also note that for α close to −0.25 and these energies transmission coefficient is quite small
even for a single plane.
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